
Commander S — The shell as a browser

Martin Gasbichler Eric Knauel
Universiẗat Tübingen

{gasbichl,knauel}@informatik.uni-tuebingen.de

Abstract
Commander S is a new approach to interactive Unix shells based
on interpretation of command output and cursor-oriented termi-
nal programs. The user can easily refer to the output of previous
commands when composing new command lines or use interactive
viewers to further explore the command results. Commander S is
extensible by plug-ins for parsing command output and for view-
ing command results interactively. The included job control avoids
garbling of the terminal by informing the user in a separate widget
and running background processes in separate terminals. Comman-
der S is also an interactive front-end to scsh, the Scheme Shell, and
it closely integrates Scheme evaluation with command execution.
The paper also shows how Commander S employs techniques from
object-oriented programming, concurrent programming, and func-
tional programming techniques.

1. Introduction
Common Unix shells such astcsh or bash make no effort to
understand the output of the commands and built-in commands
they execute on the behalf of the user. Instead they simply direct
the output to the terminal and force the user to interpret the text
own her own. As subsequent commands often build on the output
of previous commands, the user needs to enter text that has been
output by previous commands. As an example, consider a user that
wants to terminate her browser because it hangs once again. She
only knows the name of the executable (netscape) but not the
process ID. Hence she first executes theps command:

# ps
PID TIME COMMAND
704 0:00.30 tcsh

1729 6:01.35 xemacs (xemacs-21.4.17)
1740 8:10.03 netscape
5823 0:00.07 tcsh

From the output, she learns that the process ID of the browser is
1740. Now she can issue thekill command:

# kill 1740

Even though the previousps command already emitted the process
ID 1740, the user has to enter the number manually and double-
check to get the right one. Killing processes by name is so common
that there is a wide-spread Perl program calledkillall that termi-
nates all running processes with a given name. However,killall

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming. September 25, 2005,
Tallinn, Estonia.
Copyright c© 2005 Martin gasbichler, Eric Knauel.

Figure 1. Commander S

is not appropriate if multiple processes with the same name exist
but only one of them is to be terminated.

Commander S takes a different approach to the concept of
an interactive Unix shell: Commander S tries to understand the
output of the commands it executes and present it to the user in
such a way that the user can easily refer to the output of previous
commands. To that end, Commander S draws a user interface on
the terminal using the ncurses library. It divides the screen into
three areas as shown in Figure 1: The upper half of the screen
occupies thecommand windowwhere the user enters the command
line. The command line provides the usual line editing facilities
such as cursor movement. Below is a small window, called the
current command window, which shows the last command being
executed. Theresult windowcovers the rest of the screen and
contains the output of the last command. The crucial point of the
result window is that Commander S presents—for an extensible set
of known commands—the result of the commands not simply as
text but as structured data. The user can change the focus from the
command buffer to the result buffer andexplore the result. This
means that through various key-bindings, the user can invoke other
commands that apply to the data presented in the result window.
Furthermore, the user canpastethe data from the result window
into the command window to complete the next command line.



In the case of the example above, Commander S knows that the
result of theps command is a list of processes. It presents this list
in the result window as follows:

PID TIME COMMAND
704 0:00.30 tcsh

1729 6:01.35 xemacs (xemacs-21.4.17)
1740 8:10.03 netscape
5823 0:00.07 tcsh

The result window shows the first line with inverted colors because
it is the focus object. Some key-bindings modify the focus object
only, while others affect the entire result window. Of course, the
user can also change the focus object with key strikes. For the list
of processes, she needs to press the up and down arrows. To return
to the task of killing the browser, user needs to press the down key
twice and can then press the key for sending the focus object to the
command window. Now, she only needs to add thekill command
to the command line and press the return key to invoke it. If the
user were to kill several processes, she would have to mark them
for selection by making one after the other the focus object and
pressing the marking key. Then the key for pasting the selection will
send them to the command window. Sometimes it is desirable to
build the command line not only from the results for the most recent
command but from one or more commands that were executed
earlier. To support this, Commander S maintains a history for the
result buffer in which the user can go backwards and forwards as
necessary. This history makes the old results immediately available
and the user does not need to use the scrolling facility of the
terminal if a command with a larger amount of output happened to
be before the result the user is searching for. The current command
window always informs the user, which command line produced
the output in the result window.

Commander S is also an interactive front-end to scsh, the
Scheme Shell. This is realized by a second mode, calledScheme
mode, for the command window, to which the user can switch from
the standardcommand modewith a single key press. The interac-
tion between result window and command window also works for
the Scheme mode, but the representation of the pasted objects are
s-expressions in this case. The combination of both modes enables
the user to combine the power of Scheme with the brevity of shell
commands.

In addition, Commander S extends the job control features of
common Unix shells. First, the job control facility displays the
list of current jobs in the result buffer with key-bindings for the
common commands such as putting a job into foreground or back-
ground. Second, Commander S uses the ncurses library to contin-
uously display the status of the all current jobs. Finally, Comman-
der S can execute a background job with a separate terminal and
allows the user to switch to the terminal, view the running output,
or enter new input. To that end, Commander S provides a terminal
emulation which stores the output of the process.

1.1 Overview

Section 2 explains some programming techniques and particular li-
braries used for implementing Commander S. Section 3 gives an
overview on Commander S’s kernel and describes the implemen-
tation of some central features of the user interface. Section 4 de-
scribes the interface for writing new viewers. Section 5 pictures
some standard viewers such as the process viewer and the directory
viewer. Section 6 provides details on the job control implemented
by Commander S. Section 7 lists some related work, and Section 8
concludes and presents future work.

2. Preliminaries
This section explains some programming techniques and libraries
used to implement Commander S. A reader familiar with the par-
ticular techniques may choose to skip the corresponding sections.

2.1 Object-oriented Programming in Scheme

Theviewersdescribed in Section 5 and Section 4 undertake the task
of displaying the result of a command according to its structure.
Viewers are implemented in terms of object-oriented programming
(Section 4 motivates this design decision). We used the object sys-
tem proposed by Adams and Rees [2] as a foundation. This system
is elegant, easy to implement and very powerful. The complete ma-
chinery needed for the object system is given by functions shown
in Figure 2. The system represents an object as a procedure that
binds the instance variables in its closure and accepts a message (a
symbol) as its sole argument. It dispatches on the message and re-
turns the corresponding method as a procedure (seeget-method).
All methods accept the object as their first argument to ensure that
overridden methods always get the correct object. Hence,send, the
construct for calling a method, callsget-method first to acquire
the actual method and calls that method with the object itself plus
the arguments passed tosend.

2.2 Concurrent Programming using the Concurrent ML API

Commander S is implemented as a concurrent application spawn-
ing various threads. To synchronize the threads, Commander S em-
ploys a Scheme implementation of the Concurrent ML (CML, for
short) concurrency functionality [7]. The implementation is given
as a library that is part ofSunterlib, the Scheme Untergrund Li-
brary [1]. This section provides a short introduction to the subset
of the CML API used throughout the implementation of Comman-
der S.

CML offers a collection of data-structures for the communica-
tion between threads. For the implementation of Commander S,
synchronous channelsandplaceholdersare important. A channel
offers asend operation that posts a value to channel and areceive
operation that reads a value posted to the channel. The commu-
nication is synchronous, thus, asend operation returns exactly at
the time when another thread tries toreceive a value from the
channel (and vice versa). A placeholder is an updateable cell, al-
lowing exactly one assignment. A thread reading the value of a
placeholder withplaceholder-value blocks until another thread
updates placeholder with a value usingplaceholder-set!. Up-
dating a placeholder already containing a value yields an error.

The CML frameworks allows the decoupling of describing a
synchronous operation from actually performing the operation.
Thus, synchronous operations become first-class values, called
rendezvousin the CML notation. Thereceive operation on a
synchronous channel, for example, is composed of generating a
rendezvous that describes synchronous operation (e. g. “receive a
message on a channel”) and waiting till the rendezvous actually
occurs. Thus,receive is implemented as follows:

(define (get-method object message)
(object message))

(define method? procedure?)

(define (send object message . args)
(let ((method (get-method object message)))

(if (method? method)
(apply method (cons object args))
(error "No method" message))))

Figure 2. Machinery for the object system.



(define (receive channel)
(sync (receive-rv channel)))

In whichreceive-rv is a constructor for rendezvous that describe
a receive operation on a synchronous channel andsync is the
function that blocks the thread until a rendezvous actually takes
place, or phrased in CML terminology, becomesenabled. Send and
placeholder-value may be decomposed in the very same way
usingsend-rv andplaceholder-value-rv.

CML provides combinators that combine multiple rendezvous
to a more complex rendezvous. The most important combinator
is choose, which waits for the first rendezvous from a given list
of rendezvous to become enabled. Commander S frequently uses
select, the synchronous variant ofchoose. Thewrap combinator
allows associating apost-synchronization actionin form of a func-
tion with a rendezvous. When the rendezvous becomes enabled,
the associated action is carried out. Function that serve as the post-
synchronization actions accept one value — the value that becomes
available upon synchronization of the corresponding event. For a
receive operation, for example, the value given to the action func-
tion is the value received via the channel. The following example
code illustratesselect andwrap:

(select
(wrap (receive-rv channel-1)

(lambda (value)
(placeholder-set! p value)))

(wrap (placeholder-value-rv q)
(lambda (value)

(send channel-2 value))))

Here, select combines two rendezvous associated with post-
synchronization actions and blocks until the first rendezvous
becomes enabled. The first rendezvous in question describes a
receive-operation on a synchronous channel namedchannel-1.
Wrap associates a function with this rendezvous that places the
value received viachannel-1 in a placeholderp. The second ren-
dezvous describes the synchronous operation of waiting for the
value of placeholderq becoming available. This rendezvous is also
associated with a post-synchronization function which takes the
value that just became on-hand and sends it tochannel-2.

2.3 The ncurses library

Ncurses [3] is a C library that provides a high-level interface to
terminal control. In practice a multiplicity of terminal emulations,
each having their own control sequences, is in use. Thus, even small
tasks like placing the cursor at a certain position on the screen be-
come complex. To assure that an application is portable, the ap-
plications needs to know the escape codes of many terminal em-
ulations. Ncurses relieves the programmer of this task. Given a
standardized abstract description of a terminal emulation, a so-
called terminfoentry, usually provided by the maker of the oper-
ating system, ncurses learns a particular terminal emulation. The
high-level interface of ncurses provides functions for creating over-
lapping windows, outputting text, controlling the color of output,
and placing the cursor. Ncurses also offers a functionwgetch for
reading input from the terminal that decodes the control sequences
the terminal emulation uses to encode special keys (such as cursor
movement), to a standard representation. We set aside a survey of
the ncurses functions used and instead explain their functionality
where occur in the following sections.

A separate library for scsh, calledscsh-ncurses, provides
Scheme bindings for all ncurses functions using scsh’s foreign
function interface. Writing the stubs needed to encode and de-
code C and Scheme values and calling the ncurses functions is al-
most straightforward. Justwgetch requires special attention. The
wgetch function reads a character from the terminal, decodes the
control sequence if necessary, and returns an integer key code. If
no input is available, the behavior ofwgetch depends on a global

mode: indelay mode, the function blocks the process until the in-
put becomes available, whereas innon-delay modethe functions
yields an error. From the perspective of a scsh user, either mode is
unfavorable. Callingwgetch in delay-mode blocks the whole scsh-
process and subsequently all Scheme threads.1 In non-delay mode,
a Scheme thread waiting for input would have to wait busily, thus
waste processor time. A preferable mode of operation is to block
solely the Scheme thread callingwgetch. To achieve this behavior,
scsh-ncurses callswgetch in non-delay mode at first. Ifwgetch
yields an error,scsh-ncurses calls scsh’sselect on the termi-
nal to block the Scheme thread callingselect until the terminal
becomes available for reading. Scsh uses the Unixselect call in-
ternally to wait for the file and socket descriptors associated with
Scheme ports to become ready for reading and writing. Scsh also
offers select as Scheme function, which adds the Scheme ports
supplied as arguments to the list of file descriptors to watch with
the internalselect.

3. Commander S’s kernel
The introduction left unspecified how Commander S recognizes the
meaning of a command’s output. The idea is not to execute the pro-
gram directly, but hand over this task to a function that runs the
program and parses its output. In the notion of Commander S this
function is acommand plug-in. A command plug-in registers itself
as a wrapper for the execution of a certain program. Displaying the
parsed output in the result buffer is not in the field of duty of the
command plug-in. Instead,viewer plug-inspresent the output in a
structured way. A viewer plug-in registers itself as the presenter for
results of a certain type. Command plug-ins are expected to pro-
duce a result value of a distinguishable type. Thus, Commander S
decouples command evaluation from presentation of the output.

The kernel of Commander S may be regarded as a read-eval-
print-loop. Basically, a central event loop processes the input, in-
vokes a command plug-in or executes an external program, and
chooses the viewer plug-in to present the result in the result buffer.
In Scheme mode, usual Scheme evaluation takes place, but the re-
sult is displayed using viewer plug-ins as well. Thus, the evalu-
ation of Scheme expressions also benefits of the power of viewer
plug-ins. This section describes the crucial parts of Commander S’s
kernel.

3.1 Event loop

A central event loop receives all input of the terminal and decides
what to do. Basically, the decision depends on two factors: which
window has the focus and whether the key pressed has special
meaning.

Keys with special meaning, such as thereturn key, are treated
by the kernel. Thereturn key triggers the evaluation of a com-
mand.Cursor-up andpage-up or cursor-down andpage-down
keys move through the command history and result history, respec-
tively (see Section 3.6). The key sequenceControl-x is treated
as a prefix, and thus modifies the meaning of the next key press.
The sequenceControl-x o switches the buffer currently focused.
Control-x p andControl-x P paste the current selection and
the current focus value, respectively, into the command buffer (see
Section 3.3).

If the command window has the focus and the key has no special
meaning to the kernel, the key event is passed to the function im-
plementing line-editing (see Section 3.5), which interprets the key
accordingly and updates the command buffer. Before continuing in
the event loop, the command window needs to be updated to reflect
the new state of the command buffer. Thus, the event loop calls a
function to repaint the affected part of the command window.

1 Scsh employs a user-level thread system



〈command-line〉 ::= 〈cmd〉 (〈comb〉 〈cmd〉)∗ 〈job〉?
〈cmd〉 ::= 〈prog〉 〈arg〉∗ 〈redir〉∗
〈redir〉 ::= (> | < | >>) 〈fname〉

| << 〈s-expr〉
〈comb〉 ::= | | && | || | ;

〈job〉 ::= & | &*
〈prog〉 ::= 〈str〉 | 〈unquote〉

〈fname〉 ::= 〈str〉 | 〈unquote〉
〈unquote〉 ::= ,〈s-expr〉 | ,@〈s-expr〉

〈str〉 ::= 〈scheme-string〉
| c+ c 6∈ {&, |, <, >, ,}

Figure 3. Command language

If the result window has the focus, the key event is passed to the
viewer currently visible in the result window. Thus, except for the
key sequences listed above, a viewer gets all key events.

3.2 Executing commands

How Commander S executes a command depends on whether the
command has been entered in Scheme mode or command mode. If
the command buffer is in Scheme mode, the kernel expects the line
entered to be a Scheme expression and evaluates it usingeval. The
command mode, in contrast, works akin the prompt of a traditional
shell.

The commands entered in the command mode must conform
to the command languageof Commander S. Figure 3 shows a
grammar for the command language. Except for some minor dif-
ferences, this language largely accords to the syntax for commands
that users are accustomed to by traditional shells. A notable dif-
ference concerns strings, which Commander S models like scsh.
While a shell liketcsh distinguishes strings in single quotes,
double quotes, and backward quotes (for using the output of a
command as a string), strings in Commander S’s command lan-
guage are always Scheme strings. The command language is im-
plicitly quasiquoted. Thus, in contexts where a string is expected,
the user may use unquote and specify a Scheme expression to be
evaluated. Results of the evaluated expression may be a string, a
symbol, or an integer. This way, thetcsh commandkill ‘cat
/var/run/httpd.pid‘ that employs backward quotes to use the
contents of the file/var/run/httpd.pid as an argument forkill
may be written askill ,(run (cat /var/run/httpd.pid))
in Commander S’s command language.

Scsh already supplies a mechanism for running an external pro-
gram: therun macro. This macro expects a specification for the
program to run and the redirections of the input and output chan-
nels as its arguments. The specification has special syntactic no-
tions calledprocess formsandextended process forms[9]. Com-
mander S includes a little compiler, which translates a command
language command to a process form suitable for the usage with
run. Thus, when a user submits a command, the compiler gener-
ates a corresponding process form and Commander S callseval to
actually run the program as specified.

However, the compiled process form demands some prepara-
tions before it may be evaluated byeval: therun macro doesn’t
substitute shortcuts symbols widely-used by traditional shells.
These shortcuts include the tilde, which denotes the user’s home
directory, environment variable names, andglob-patterns. A glob-
pattern specifies a list of files by a regular expression. The glob
pattern{/var/tmp,/tmp}/*.scm, for example, specifies a list of
all files with names ending in.scm in the directories/var/tmp and
/tmp. Thus, Commander S inserts an expansion pass before evalu-
ating a command that searches the compiled command for shortcuts

symbols and replaces them. To implement globbing, Commander S
uses the C shell compatible implementation ofglob that is part of
the scsh API.

The evaluation of Scheme expressions takes place in a sepa-
rate environment called theshell environment. The basis for this
environment is the module definition of theshell modulewhich
importsscheme-with-scsh, a module providing R5RS and the
whole scsh API. The Scheme 48 module system facilitates turning
a module into an environment suitable as an argument for Scheme’s
eval function. Thus, evaluating Scheme expressions boils down to
calling eval and using the shell environment as the environment
for evaluation.

The shell module redefines a choice of scsh functions to return
a value with a distinguishable type.Directory-files serves as
an example; if called without arguments, this function returns the
contents of the current working directory as a list of strings. This
representation is very handy when writing scripts. However, this
representation of directory contents is indistinguishable from an ar-
bitrary list of strings. This poses a problem: the viewer to be used to
display a result is selected by examining the result. Thus, the shell
module introduces a new record typefs-object, which encapsu-
lates a file-system object, and redefinesdirectory-files to re-
turn a list offs-objects. The redefinition ofdirectory-files
calls the original definition ofdirectory-files, imported with
a different name, and wraps the resulting filenames infs-object
records. So far the shell module only redefines a few functions that
return filenames. An aim of future work is to apply this technique
to other parts of the scsh API as well.

3.3 Focus value table

Pasting values into the command window running in Scheme mode
requires an external representation of the value. This severely re-
stricts the set of values usable for pasting. For example in scsh
records, continuations, and procedures have no external representa-
tion. Thus, Commander S allows pasting objects as a reference into
a global table called thefocus value table. View plug-ins may regis-
ter a value in the table usingadd-focus-object which returns an
integer index. The functionfocus-value-ref returns the stored
value at a given index. Hence, the viewer plug-in may avoid con-
verting a value to an external representation and return a call to
focus-value-ref instead.

3.4 Command plug-ins

Command plug-ins undertake the task of running a particular ex-
ternal program, parsing the program’s output and representing the
result as an distinguishable type. The command plug-in forps ex-
emplifies this. If a user entersps to see the list of running processes,
in the command mode of Commander S, this invokes theps plug-
in. Theps plug-in runs the actualps program provided by the op-
erating system and parses its output. The result is represented as a
list of process records, thereby making the result distinguishable
from an arbitrary list of strings and enabling viewers to recognize
the type of the result.

The functionregister-plugin! registers a new plug-in with
Commander S. The constructormake-command-plugin creates
a new command plug-in record which contains three entries: A
name for invoking the plug-in, a completion function that calcu-
lates completions for the arguments (see Section 3.7), and theplug-
in function. The kernel calls the plug-in function to run the com-
mand, parse the output, and produce the result value. Instead of
executing an external program, a plug-in function may also call a
scsh function. The following code shows the command plug-in for
printenv as example.Printenv returns a list of all environment
variables:

(register-plugin!
(make-command-plugin "printenv"



no-completer
(lambda (command args)

(env->alist))))

Theno-completer is a completion functions that offers no com-
pletions for a command (see Section 3.7). The scsh function
env->alist returns all environment variables as an association
list.

3.5 Line-editing

The feature users miss most when using scsh in an interactive ses-
sion is line-editing. Line-editing involves making the backspace
key work as expected, allowing the user to move the cursor using
the cursor keys, inserting text at an arbitrary position of the com-
mand line, and some extra features the user is accustomed to from
text editors. The scsh REPL does not provide line-editing because
it appliesread directly to standard input to read from the termi-
nal. However, the command buffer of Commander S offers a line-
editing functionality with the features mentioned above and feeds
the input intoread (or the parser for the command language) only
after the user has pressed thereturn key. The line-editing func-
tionality is implemented in terms of the ncurses (see Section 2.3),
thus is portable and involves no emulation specific code.

3.6 Command and result history

Like conventional shells, Commander S offers a so-calledcom-
mand history. A command history provides a way to access the
prior commands entered during the session. Most Unix shells bind
the cursor keys to a function that cycles through the list of com-
mands and displays prior commands at the prompt. This feature is
especially useful when the user executes a series of similar com-
mands.

Besides the command history Commander S also provides are-
sult history. The motivation for this novel feature is a limitation of
traditional Unix shells that don’t provide a method to access the
output or result of a prior command execution. In this case the user
falls back on a feature of her terminal emulation program. These
programs usually buffer the output of the terminal session, thus,
the user may scroll up and view the output of commands issued
afore. To reuse a prior result the user copies the text to the com-
mand prompt using a copy and paste mechanism provided by the
terminal program. This method, although exercised by numerous
users, has at least two drawbacks. First, it may be hard to find the
wanted result — there may be lots of output to search through and
the wanted output may even be mingled with another processes out-
put (see Section 6). Second, there is only access to a textual repre-
sentation of the result.

Commander S saves the result objects created during a session
in the result history. Thus, the user may go back in the result history
at any time and continue to use a saved result object. The result
history facilitates the task of finding the desired result — each
command is associated clearly with the result it produced. While
cycling through the result history, the active command window
shows the command used to produce the result shown in the result
buffer.

In the notion of Commander S, a result history is easy to im-
plement. Having the viewer objects (see Section 4) instanced, the
kernel stores the object along with the corresponding command in
a list that serves as the history. Thus, going back and forth in the
history selects an existing viewer object that is set as the the current
result object. Subsequently, the kernel clears the result window and
sends apaint message to the new current result object to make the
object visible.

3.7 Programmable completion

Most shells offer an automatic completion for commands and argu-
ments entered partially at the prompt. Usually pressing the tabulator
key while editing a command line at the prompt triggers acomple-
tion function. This function considers the token of the command
line the user is currently editing (that is, the token where the cursor
is) and finds a set of strings to which the partially entered token is a
prefix. This set depicts the set of possible completion for the token.
If there is more than one possible completion, most shells simply
display the possible completions and expect the user to continue
editing the token until the prefix becomes unambiguous. Depend-
ing on the position of the token in the command line, the token
denotes a program to be executed or an argument to a program.
Thus, only executable files come into question as completions for
the command token, whereas, intuitively there no such constraint
for argument tokens. Most shells accommodate this observation by
using different completion functions for the particular tokens of a
command line.

Popular shells liketcsh, bash, andzsh offer aprogrammable
completion functionwhich allow users to write completion func-
tions tailored to syntax of arguments of a specific command. The
file transfer programftp, for example, expects a host name to con-
nect to as its first argument. The followingtcsh commands estab-
lishes an appropriate completion function forftp:

> set preferred_ftp_hosts=(ftp.gnu.org ftp.x.org)
> complete ftp ’p/1/\$preferred_ftp_hosts/’

This example specifies a completion for the first argument only.2

The possible completions for this argument are given as a list
specified in the variablepreferred ftp hosts.

Commander S provides a similar programmable completion
function for the command mode. If the user presses the tabulator
key a general completion function calls the parser for the com-
mand language and identifies the token the cursor is pointing at.
This token is considered for completion. Depending on the posi-
tion of this token a more specific completion function is selected.
The completion function for command tokens is a built into Com-
mander S and uses the union of executables available in the paths
listed in PATH and the set of registered command plug-in names
as possible completions. However, the user may wish to specify
an executable by entering a complete path. In this case the com-
mand completion function callscomplete-with-filesystem-
objects to build the list of completions. This function checks
whether there is a file or directory that matches the partially en-
tered path. If the token matches a directory name,complete-
with-filesystem-objects offers the contents of this directory
as possible completions. Otherwise the parent directory of the par-
tial names is searched for completions.

If a completion function returns a single possible completion,
Commander S may replace the token on the command line with
this completion and repaint the command prompt. However, if there
is more than one completion, Commander S uses the result buffer
to display the list of completions. The user may use the list as an
aide to memory and continue to type the token, or by pressing the
tabulator key a second time switch the buffer focus and select a
completion using the cursor keys directly.

The general completion functions also handles the comple-
tion of arguments. Unless a specific a completion function for
the current command token is specified, it callscomplete-with-
filesystem-objects to complete the argument. Specific com-
pletion functions are tied to command plug-ins. Thus, to provide a
special completion function, the user adds a command plug-in. The
following command plug-in for theftp command provides such a
completion function.

2p/1 stands for “position one”



(register-plugin!
(make-command-plugin
"ftp"
(let* ((hosts ’("ftp.gnu.org" "ftp.x.org"))

(cs (make-completion-set hosts)))
(lambda (command to-complete)

(completions-for
cs (or (to-complete-prefix to-complete) ""))))

just-run-in-foreground))

In this example, the second argument tomake-command-plugin
is the completion function. A completion function has two argu-
ments; the abstract syntax of the command line and the token to
completed. The completion function in question uses a built-in list
of host names as possible completions.Make-completion-set
creates a special caching data-structure which speeds up the com-
putation of matching completions. This is especially useful when
the set of possible completion is big, for example, when search-
ing the completions for file names. The procedurecompletions-
for searches and returns the matching completions for the prefix
returned byto-complete-prefix in the completion set.

4. Implementing Viewer Plug-ins
In the notion of Commander S aviewer plug-in(viewer for short)
undertakes the task of displaying the result value of a command
in a structured fashion. However, a viewer may go beyond just
displaying data and implement a small application running in the
result window. The predefined file system viewer (see Section 5),
for example, not only displays files and directories but also allows
navigating through subdirectories.

Given a result value, Commander S tries to find the appropriate
viewer. Each viewer comes with a predicate that identifies the result
values the viewer handles. Commander S applies the predicates
provided by the registered viewers to the result value. The viewer
belonging to the first predicate to evaluate to true accepts the bid.
Now, Commander S instances a new viewer using the accordant
constructor and asks the viewer to paint itself to the result window.

Viewers are implemented using object-oriented programming
(see Section 2.1 for an introduction of the object system used). A
viewer depicts an object that accepts the messages sent by kernel
and encapsulates a state. In this setting, an object-oriented approach
appeared to be a natural choice. Commander S sends the following
messages to viewer objects:

• paint The paint message asks the object to paint itself to
the result window. This message is sent to objects just created
or if an result object becomes the current result object. (i.e.,
if the user cycles through the result history, see Section 3.6).
As arguments, the objects receives the ncurses window to paint
in, a result buffer object which contains information about the
result window’s size, and a boolean indicating whether the
result window has the focus.

• key-press If the result window has the focus, the current
result object receives akey-press message whenever the user
presses a key. The object receives the key code and a boolean
saying whether the special prefix key sequenceControl+x is
active as arguments. The kernel expects this method to return
an instance of the viewer and stores this instance in the history.
This is a clincher, since this allows a viewer to instantiate and
return a different viewer. The viewer responsible for displaying
the contents of a user record, for example, uses this case to
instance a directory viewer object if the user presses return key
on the line displaying the path to a user’s home directory.

• get-selection-as-ref This message asks the viewer to re-
turn the current selection as a reference intofocus-value-
table (see Section 3.3) received as an argument. The message

is only available if the command buffer is in Scheme mode,
thus, the return value of this method has to be a piece of Scheme
code (as a string).

• get-selection-as-text This message asks the viewer to
return the current selection in a textual representation. If selec-
tions don’t make sense in context of a result value, this method
may return false. A boolean delivered as an argument says
whether the selection is to be inserted into the command or
Scheme mode. Thus, a viewer may deliver an adequate string
(see Section 4.2 for an example). It is conceivable though that
representing the selection as a string makes no sense. In this
case a viewer may choose to understand theget-selection-
as-text message as aget-selection-as-ref message,
hence, requiring a reference to thefocus-value-table. To
facilitate this, thefocus-value-table is passed as a second
argument to theget-selection-as-text messages.

4.1 Selection lists

Before giving an example for the implementation of a viewer ob-
ject, we shall describeselection lists. Selection lists are an impor-
tant user interface widget, akin to menus, used by almost all viewer
objects. A selection list displays a given set of entries as sequential
lines at an arbitrary position inside an ncurses window. Using the
cursor keys, the user may move a selection bar over the lines to fo-
cus a particular entry, and mark and unmark entries. Most viewers
employ a selection list using marking to facilitate selecting items
which are to be processed together. The selection list also deter-
mines the area in view if the number of items to display exceeds
the space assigned to the selection list.

The constructormake-selection-list expects as its argu-
ment a list of records of typeelement that denote the items of
the selection list, and returns a Scheme record representing the se-
lection list. Anelement record consists of a field that carries the
object to be returned if the user marks the accordant line, a boolean
saying whether this entry may be marked at all, and the text to be
displayed.

Thepaint-selection-list-at operation accepts a selection
list, window-based coordinates, and an ncurses window as its argu-
ments and paints the selection list in its current state at the given
coordinates to the window. To pass key events to a selection list,
viewer objects call the functionselection-list-handle-key-
press which updates and returns the state of selection list accord-
ingly.

Implementing aget-selection-as-text method in a viewer
frequently boils down to getting the list of marked entries from
a selection list usingselection-list-get-selection, or, if
this list is empty because no entries are marked, getting the entry
currently focused by the selection bar usingselection-list-
selected-entry. The selection list implementation offers the
functionmake-get-selection-as-ref-method which returns a
function suitable as an implementation of aget-selection-as-
ref method. The focus objects returned by methods implemented
using this function stand for the return object specified in the
accordantelement record.

4.2 Example: process viewer

As an example for the implementation of viewers, this section de-
scribes the implementation of the process viewer from the intro-
duction and sketches the implementation of the command plug-in
for ps.

The process viewer views the output of theps command. Theps
command is a command plug-in based on theportable ps library
from Sunterlib [1]. As theps command is not standardized, the li-
brary dispatches on the type of the host operating system and then
issues theps command with options chosen to get all processes



and a set of additional information available on all supported plat-
forms. It then parses the output and stuffs it info a record of type
process. Theps command plug-in does not currently support ad-
ditional options but returns this list unchanged. In the future, the
ps command should accept arguments to restrict the returned pro-
cesses and customize the additional information. While argument
parsing is certainly more work, a user who often switches operating
systems would certainly be happy to use the same set of options on
all platforms. Of course, the syntax of the options could easily be
made customizable.

Figure 4 contains the implementation of the viewer plug-in for
processes. The functionmake-process-viewer is the constructor
for process viewer objects. The constructor is called by the ker-
nel, if the predicate for this viewer,list-of-processes?, iden-
tified a result value as a list of process objects. The kernel supplies
the result value in question and the buffer to draw to as arguments
to the constructor. The constructor returns a function that given a
message name returns a function implementing the method. The in-
stance variables of the object are bound in the closure of this func-
tion. The process viewer employs a selection list (see Section 4.1)
to display a list of processes.Make-process-selection-list
formats the process objects and usesmake-selection-list to
create a selection list that fits into the result window leaving one
line free for a heading. On apaint message, the viewer displays
the header and calls the procedurepaint-selection-list-at to
draw the selection list beneath the header. Akey-press message
is also forwarded to the selection list. On aget-selection-as-
text message, it returns the PIDs of the selected processes for the
command mode and a list of PIDs in the Scheme mode.

Finally, the last two lines of the figure register the process
viewer plug-in registers as viewer for a list of records of type
process and hands out the constructor to the kernel.

5. Predefined viewers
The previous section already presented Commander S’s viewer for
processes. In this section, we present further viewers for filesystem
objects, user and group information and results of commands re-
lated to AFS. In addition, a viewer for inspecting arbitrary Scheme
values is described.

5.1 The filesystem viewer

Dealing with files is another common scenario where the user is
forced to re-enter text that appeared in the output of a previous
command. A common pattern is that the user first issues anls
command to list the files within a directory and then uses another
command to manipulate certain files. To view the most recent error
log file of an Apache web-server, the user could first usels -lat,
which prints the files sorted by date:

# ls -lt
-rw-r--r-- 5543 Jun 15 02:00 error_log.1118275200
drwx--x--- 512 Jun 15 02:00 ./
-rw-r--r-- 49024 Jun 14 15:04 access_log.1118275200
-rw-r--r-- 66312 Jun 8 21:59 access_log.1117670400
-rw-r--r-- 11498 Jun 8 21:59 error_log.1117670400
-rw-r--r-- 140048 Jun 1 18:17 access_log.1117065600
-rw-r--r-- 4688 Jun 1 05:36 error_log.1117065600
drwx--x--- 512 Mar 25 2004 ../

Next, she would invoke a viewer such asless on the latest file
error log.1118275200:

# less error_log.1118275200

Again, the user has to enter text that appeared in the output of a pre-
vious command. Modern shells such asbash or tcsh will help the
user to enter by providingcommand line completion. This means
that the shell examines the command line already typed and com-
pletes the last token as far as possible or presents the user a set of

(define (make-process-viewer processes buffer)
(let* ((processes processes)

(cols (result-buffer-num-cols buffer))
(lines (result-buffer-num-lines buffer))
(sel-list
(make-process-selection-list
cols (- lines 1) processes))

(header (make-header-line cols)))

(define (get-selection-as-text
self for-scheme-mode?
focus-object-table)

(let* ((marked
(selection-list-get-selection sel-list)))

(cond
((null? marked)
(number->string
(process-info-pid
(selection-list-selected-entry sel-list))))

(for-scheme-mode?
(string-append
"’" (exp->string

(map process-info-pid marked))))
(else
(string-join
(map process-info-pid marked))))))

(lambda (message)
(case message
((paint)
(lambda (self win buffer have-focus?)

(mvwaddstr win 0 0 header)
(paint-selection-list-at
sel-list 0 1 win buffer have-focus?)))

((key-press)
(lambda (self key control-x-pressed?)

(set! sel-list
(selection-list-handle-key-press
sel-list key))

self))
((get-selection-as-text) get-selection-as-text)
((get-selection-as-ref)
(make-get-selection-as-ref-method sel-list))

(else
(error "process-viewer unknown message"))))))

(register-plugin!
(make-viewer make-process-viewer list-of-processes?))

Figure 4. Implementation of the process viewer (excerpt).

possible completions. The shell derives the possible completions
from the leading command, the default mode is to complete the to-
ken as a filename. In the example above, the user could ask the shell
to complete the command lineless e. The shell will expand this
toless error log.111 and list all error files as possible comple-
tions. Now the user needs to inspect the output of the previousls
-lt command to learn that the name of the most recent file contin-
ues with an8. After entering this character, the shell is able to fully
complete the filename. However, while command line completion
is certainly of great aid for the programmer, the shell again makes
no use of the output of previous commands, which contains in our
example the files in chronological order. If the example takes place
within thetcsh shell, this is especially disappointing as therels
is a built-in command. This means, the output is not produced by
some external command but by the shell itself.

The user could try to save typing by combining entering a
command line that extracts the name of the newest error log for
the output ofls and callsless on it:



# less ‘ls -1t err* | head -n 1‘

While this approach is close in the spirit of the Unix philosophy to
combine little tools to perform the work, the command line is rather
long and fragile. We would not dare to use such a construction on
the command-line for a command such asrm. It also requires the
user to know in advance that error logs (and only these) start with
err.

Commander S knows that the result of thels -lat command
is a list of files. It presents this list in the result window as follows:

Paths relative to /usr/local/svn/logs

-rw-r--r-- 5543 Jun 15 02:00 error_log.1118275200

drwx--x--- 512 Jun 15 02:00 ./
-rw-r--r-- 49024 Jun 14 15:04 access_log.1118275200
-rw-r--r-- 66312 Jun 8 21:59 access_log.1117670400
-rw-r--r-- 11498 Jun 8 21:59 error_log.1117670400
-rw-r--r-- 140048 Jun 1 18:17 access_log.1117065600
-rw-r--r-- 4688 Jun 1 05:36 error_log.1117065600
drwx--x--- 512 Mar 25 2004 ../

That is, the presentation of a list of files is the list of the file names
relative to a directory, which is displayed in the first line. If the
focus object is a directory and the user presses the return key, the
result window will display the contents of this directory. To return
to the task of viewing the latest log file, the user can immediately
press the key for sending the focus object to the command window,
as the focus object is already the most recent file. Now, she only
needs to add theless command to the command line and press the
return key to invoke it. Pasting files to the command window inserts
them as absolute filenames. If the command window is in Scheme
mode, pasting inserts filenames as strings.

If the user enters thels command, Commander S does not re-
ally invoke thels program and parse its output. Instead, it uses
the scsh functionfile-info to obtain the file status information and
the functiondirectory-files to get the contents of a directory.
From this information, it generates a list of records of typefs-
object. An fs-object combines a filename with file status infor-
mation. The filesystem viewer registers itself as the viewer forfs-
objects and for lists offs-objects.

As Commander S provides its own binding for the scsh proce-
duredirectory-files, which returns a list offs-objects in-
stead of a list of strings, and extends the scsh functions which oper-
ate on filenames tofs-objects, the viewer is also able to present
the values of Scheme expressions returning lists of filenames.

The functionality of filesystem viewer could be extended in
various aspects: additional key-bindings for renaming, deleting, or
copying files, manipulation of file mode bits, invoking of a default
application based on the filename suffix, and so forth. However,
while we would certainly like to have these features, it is not the
focus of our current work as programs like midnight commander
or the dired plug-in for Emacs already show the merits of this ap-
proach. Instead, Commander S aims combine graphical presenta-
tion with command execution and shell programming. Unlike pure
front-ends for filesystem browsers, Commander S is also not lim-
ited to the presentation of filesystem objects.

5.2 User and group information viewer

User and group information are ubiquitous in Unix. For user in-
formation, scsh provides the procedureuser-info as wrapper
for the standard C functionsgetpwnam/getpwuid to return the
user information from a given login name or UID. It returns a
record user-info with the fieldsname, uid, gid, home-dir,
and shell which contain the corresponding entries form the
user database (usually/etc/passwd). For the group informa-
tion, scsh analogously provides a wrappergroup-info for the C
functionsgetgrnam/getgrgid. The fields of the returned record

group-info are name, gid, andmembers, the latter containing
the users of the group as a list of strings. Commander S contains
viewers for theuser-info andgroup-info records that present
the contents of the records in a selection list. The main feature of
these viewers is that the user may navigate through the presented
information by selecting an entry and pressing the return key: For
thegid field, Commander S presents the corresponding group in-
formation, for thehome-dir, it invokes the filesystem viewer from
Section 5.1 on the home directory, likewise for theshell field, and
for the members of a group, Commander S presents the associated
user information. Here is an example for the value of the expression
(user-info "gasbichl"):

[0: name] gasbichl
[uid] 666

[gid] 4711

[home-dir] /afs/wsi/home/gasbichl
[shell] /bin/tcsh

If the user presses the return key, Commander S presents the infor-
mation for GID 4711 as follows:

[name] PUstaff
[gid] 4711
members:
gasbichl
klaeren
knauel

The viewers are implemented in about 130 lines of code but al-
ready provide a nice tool for browsing user and group information.
We think that in this style a lot of information in the realm of Unix
can be presented and thus enable the user to browse this informa-
tion very conveniently and fast.

5.3 AFS

This section presents two viewers related to the Andrew File Sys-
tem (AFS for short) as an example for using Commander S for
viewing the result of special purpose programs. AFS is a network
filesystem based on a client-server model. AFS stores the data
on the server in logical partitions calledvolumes. Each volume
is mounted at some directory below the global/afs root. On the
client, a local daemon transparently fetches and stores the contents
of the volumes from the server and maps it into the local filesystem.
AFS also introduces permissions for directories based on access
control list (acl for short) and has its own user management. The
user views the permissions with thefs listacl command and
manipulates them with thefs setacl command. For example:

# fs listacl .
Access list for . is
Normal rights:

system:administrators rlidwka
gasbichl rlidwka
knauel rl

# fs setacl . knauel rli

adds the right to insert files into the current directory for the user
knauel. Commander S saves the user from entering the username
that already occurred in the output by displaying the result offs
listacl using a selection list:

Access list for . is
Normal rights:
system:administrators rlidwka
gasbichl rlidwka

knauel rl



By pressing the key for sending the selection, the user can paste the
string knauel rl to the command window running in command
mode behind afs setacl. Alternatively, the user may paste the
entry as a pair while in Scheme mode. This is especially useful to
set the rights of several users at once. For example, the following
expression grants the right to read, list and insert files to a list of
such entries which the user would paste from the result window at
the place of...:

(for-each (lambda (acl)
(fs setacl "." (car acl) "rli")) ...)

On the other hand, the viewer forfs listacl also supports di-
rect editing of the acl entries. Currently, pressing the deletion key
removes an entry from the acl. More features such as direct modi-
fication of the rights would be desirable but requires functionality
beyond the current capabilities of the selection list.

Commander S also supports management of volumes. The com-
mandfs listquota takes as argument a directory and prints the
quota information for the volume the directory resides in. This is
also a convenient way to obtain the name of the volume needed the
most volume-related commands. Commander S prints the result of
fs listquota as

Volume Name: home.gasbichl

Quota: 1000000
Used 899724
% Used 90%
Partition 28%

From here, the user can either paste the volume name into the com-
mand window or press the return key to execute thevos examine
command on the volume. A future version will also support direct
editing of the quota.

The commands for volume manipulation also have command
line completion for the volume name argument. Commander S
receives the list of all volumes from the commandvos listvldb.
Executing this command may take some time, therefore it is not
desirable to initialize this list during startup. Fortunately, command
completion is completely programmable in Scheme and during
startup the corresponding plug-in can simply spawn a thread which
issuesvos listvldb and initializes the volume list. This way, the
user has to wait only if she wants command completion forvos
before the thread finishes its work.

5.4 Value inspector

The domain of viewers is not limited to the results of Unix com-
mands. In fact, the user may add viewers for any kind of Scheme
value. Scheme 48 already comes with an inspection facility to
browse arbitrary Scheme values. We have lifted the inspection fa-
cility into our ncurses-based framework and use it as the default
viewer for exceptions which effectively implements a debugger.

We briefly review the inspection facility in Scheme 48: Its
command processor provides a command,inspect that takes as
its argument a Scheme expression, evaluates it and presents the
outermost structure of the resulting value in a menu. There is a
menu entry for every immediate sub-value. For a list, the sub-
values are the entries of the list, for a record the sub-values are
the components of the record, for a continuation the contents of the
stack frame makes up the sub-values. A menu entry consists of a
number for selection by the user, an optional name for reference,
and the external representation of the sub-value. The source of the
name depends on the kind of value being inspected: for records it
is the name of the record field, for environment frames it is the
name of the variables. List or vector entries do not have names.
After the presentation of the menu, the user may enter the number
of a menu entry to continue inspection with the corresponding sub-

value or press theu key return form the inspection of a sub-value.
For continuations, thed key selects the parent continuation. If there
are more than 14 sub-values, them key switches the presentation
of the menu to the next 14 sub-values and so on. Finally, theq
key ends the inspector and sets the focus object of the command
processor to the last value that has been inspected. The command
processor also comes with a,debug command which inspects
the continuation of the last exception that occurred. As inspection
of a continuation displays an excerpt of the source code of the
corresponding function call before presenting the menu, this is
enough to implement a very useful debugger.

For Commander S we implemented a viewer, calledinspector,
which shows the sub-values of an arbitrary Scheme value in a
selection list. The user may select a sub-value by moving the
selection bar to it and pressing the return key. In addition, we have
adopted the key-bindings foru andd from Scheme 48.

For the implementation of the inspector, Commander S mainly
reverts to the procedureprepare-menu from the implementation
of the ,inspect command. The procedure takes as its argument
a Scheme value and returns the list of its sub-values as pairs of a
name (or#f) and the sub-value. Commander S turns these pairs
into element records for a selection list: The object to be returned
on marking is the sub-value itself, all elements are markable, and
the text is the external representation shortened to the width of the
window. For the latter, we make use oflimited-write, another
utility from Scheme 48 which is a variant ofwrite that limits
the output to a certain depth and output length. Unfortunately,
the single line within a selection list of often not enough space
to present complex data structures in a useful manner. Besides
the preparation of the selection list, there is not much to do for
the inspector: As the,inspect command, it prints a source code
excerpt for continuation in a header line and being able to return
from a sub-value requires the viewer to maintain a stack of visited
values. Invoking the inspector on a sub-value pushes the current
value on the stack and theu key pops a value from the stack and
makes it the current value. The,inspect command in Scheme 48
proceeds likewise.

We could use the inspector to display any value but we have
currently only registered it for the continuations of exceptions, but
this may be extended for arbitrary values.

6. Job control
Most Unix shells allow the user to run multiple processes simul-
taneously. In shell terminology these processes are calledjobs. A
shell usually provides commands to stop and continue jobs, view
the list of jobs and their status, and the job’s access rights to the ter-
minal. All processes share a single terminal as their standard output
and input. The POSIX job control interface [5] enables the shell
to control which process may read or write to a terminal. Tradi-
tional shells pursue the following policy: A single foreground job
has read and write access to the terminal and all background jobs
are allowed write to the terminal only. If a background job tries to
read from the terminal, the shell suspends the execution of the job
until the job becomes the foreground job.

Thus, running multiple background jobs, which write to the
terminal yield a mingled output. Basically, the user has two choices
to avoid this: redirecting the output of each job to a separate file,
or make the shell’s job control stopping processes that attempt to
write to the terminal. However, both options are disadvantageous.
A job control policy with exclusive write access may stop the
computation of a background job completely just because there
is output available. This not appropriate in all cases, for example
when running a daemon from the command line. On the other
hand, redirecting the output requires extra effort for setting up the



redirections for standard output and standard error, viewing the file,
and deleting the temporary files afterwards.

Commander S adds a third method, not provided by traditional
shells, to the picture; so-calledconsole jobs. The standard input and
output of a console job are connected via a separate pseudo terminal
to Commander S. A thread continuously reads the pseudo terminal
to ensure that writing to the terminal does not block. Aconsole
record stores the pseudo terminals and the buffered output of a job.
The viewer plug-in for this record type displays the output of the
job in the result buffer and updates it continuously as new output
arrives. Thus, the user may review the output of a command at any
time. Section 6.3 discusses console jobs in detail and presents the
implementation at a glance.

Beside console jobs, Commander S offers job control as known
from traditional shells. The implementation, however, diverges
from traditional implementations. We present a elegant concurrent
implementation in the CML framework in the following sections.

Section 6.1 presents the POSIX job control facilities at a glance.
A reader familiar with these facilities and their mode of operation
may choose to skip this section. Section 6.2 describes how Com-
mander S runs jobs without a separate console. Section 6.3 explains
the execution of console jobs. Section 6.4 describes the implemen-
tation of the job list, a data structure that maintains the informations
on jobs centrally.

6.1 Traditional job control

The POSIX API contains functions for implementing job control
which are widely-used by traditional shells. Scsh already provides
bindings to these functions. Thus, it was not necessary extend scsh
to implement Commander S’s job control. This section explains
the basics of POSIX job control using scsh’s names for the POSIX
functions.

Process groups are the basis for job control — a process group
is a set of processes, which share a common process group id. Each
process is member of exactly one process group. When a process
forks, the child process inherits the process group id of the par-
ent — the process is said tojoin the parent’s process group. A pro-
cess may alsoopena new process group by callingset-process-
group. Each terminal device is associated with one process group,
named theforeground process group, all other process groups are
called background process groups. A process group makes itself
to the foreground process by callingset-tty-process-group.
In contrast to processes of background process groups, processes
of the foreground process group are granted read and write ac-
cess to the terminal. If a background process tries to read from
the terminal, the kernel terminal driver suspends the job using the
SIGTTIN signal. Depending on the configuration of the terminal a
background job writing to the terminal may also be suspended us-
ing theSIGTTOU signal. Usingwait, a parent process may watch
if a child gets suspended.

6.2 Jobs without console

Jobs without a separate console are either foreground or back-
ground jobs and work akin to jobs in a traditional shell. To execute
a foreground job, Commander S temporarily escapes the curses
mode and hands the control on the screen over to the foreground
job. Once the foreground jobs terminates (or gets suspended by a
signal), Commander S reobtains control. Commander S expects a
background job neither to read from nor write to the terminal. If
the job tries to read or write, however, the job gets suspended and
Commander S notifies the user (see Section 6.4). In this case the
user may choose to continue the job in foreground. Vice versa, a
user may also explicitly stop a foreground job and continue the job
in background.

(define-syntax run/fg
(syntax-rules ()

((_ epf)
(run/fg* ’(exec-epf epf)))))

(define (run/fg* s-expr)
(debug-message "run/fg* " s-expr)
(save-tty-excursion
(current-input-port)
(lambda ()

(def-prog-mode)
(clear)
(endwin)
(restore-initial-tty-info! (current-input-port))
(drain-tty (current-output-port))
(obtain-lock paint-lock)
(let ((foreground-pgrp

(tty-process-group (current-output-port)))
(proc
(fork
(lambda ()

(set-process-group (pid) (pid))
(set-tty-process-group

(current-output-port) (pid))
(eval-shell-env s-expr)))))

(let* ((job (make-job-sans-console s-expr proc))
(status (job-status job)))

(set-tty-process-group
(current-output-port) foreground-pgrp)

(newline)
(display "Press any key to return...")
(wait-for-key)
(release-lock paint-lock)
job)))))

Figure 5. Running a job in foreground.

The machinery for running jobs is built on top of scsh’srun
form. The form (run/fg epf ) executes the extended process
form epf as a foreground job. To specify a program to run and
the corresponding redirections of the input and output channels
scsh uses a special syntactic notation: process forms and extended
process forms. Thus,run andrun/fg are implemented as macros
not as functions.

Figure 5 shows the implementation ofrun/fg. Applications of
run/fg expand into a call torun/fg*; a function that expects
a piece of Scheme code as a s-expression as its argument. The
Scheme code is supposed to actually run the process using scsh’s
basicexec-epf facility. Unlike run, exec-epf does not fork the
process before running the program.Run/fg* callseval-shell-
env to evaluate the Scheme code in the shell environment. It is
important that the evaluation takes place in the shell environment
since an extended process form is implicitly backquoted, thus, by
using unquote, a user may embed Scheme code in an extended
process form. Carrying out the evaluation in the shell environment
ensures, for example, that the user may refer to variables defined
interactively in the Scheme mode or use focus values.

Before running the process usingeval-shell-env, run/fg*
calls a sequence of ncurses functions to save the current screen,
clear it and finally escapes the curses mode temporarily using
endwin. This yields an empty screen called theresult screen. This
avoids that the Commander S screen is garbled with the output of
the process. To execute the process,run/fg* forks the process,
opens a new process group, and makes this process group the
new foreground process group. The parent process callsmake-
job-sans-console to create a new job record with the process
object returned byfork. The parent process usesjob-status;
a wrapper version ofwait for jobs. Thus, the parent waits until



the child process exits and makes itself the foreground process
group again. Afterwards, the parent process waits for a key press
to give the user time to read the child’s output. It is essential
to ensure that no output occurs during the time Commander S
is a background process — otherwise the terminal driver would
suspend Commander S. To enforce this conditionrun/bf obtains
thepaint-lock which prevents other threads, such as the thread
that updates the job status indicator (see Section 6.4), from painting
onto the screen.

Running jobs in background works alike using a function
run/bg*. There, the code for escaping from the curses mode and
setting the foreground process drops out. On start-up, Comman-
der S configures the terminal to stop background processes that try
to write to terminal, thus, a background cannot garble the screen.
Commander S offers two functions for continuing suspended jobs
without a console:Continue/fg puts a stopped job into the fore-
ground and continues the job,continue/bg, vice versa, continues
a job as a background job. The implementation of this functions is
derived from the implementation ofrun/fg* andrun/bg*. How-
ever, instead of forking and callingexec-epf, the functions send
the process group of the job aSIGCONT signal, thus, the processes
continue to execute.

6.3 Console jobs

The implementation of console jobs is more complex than the im-
plementation of jobs without console. While there is no extra effort
needed to display the output of job without console — it is only
visible on the separate result screen — the output of console jobs
causes more effort. The output of a job must be read by Comman-
der S continuously to keep the job running. However, displaying
the output in the result buffer as it occurs is not reasonable — the
job would behave like an ordinary foreground job.

Here, the concept of viewer plug-ins comes into play. The out-
put of a console job is represented by aconsolerecord. An ac-
companying viewer plug-in for this record type displays the output
and updates the result buffer as new output arrives. To the kernel a
console is conceptually just another value with a predefined viewer
plug-in. Each console is accompanied by a thread that reads the
pseudo terminal of the process and sends the characters read into
a synchronous CML channel. Thus, this thread lifts I/O events into
the CML framework.

To actually paint the contents of the output buffer to the screen,
the console viewer plug-in uses a so-calledterminal buffer. The
heart of a terminal buffer is a thread spawned by the function shown
in Figure 6. The terminal buffer is connected via the synchronous
pty-channel to the thread that reads the console’s output. De-
pending on whether the console is currently visible in the result
buffer or not, the terminal buffer either buffers the new output (by
calling terminal-buffer-add-char) or buffers it and immedi-
ately repaints the result buffer. The decision whether to update the
result buffer or not is left up to the console viewer plug-in, which
usesresume-console-output or pause-console-output to
stop and continue the updates, respectively.

The terminal buffer performs a second task hidden in the func-
tionterminal-buffer-add-char. Basically, this function imple-
ments a terminal emulator for a small subset of VT100 control
codes. The terminal emulation is necessary to restrict the effects
of terminal escape codes generated by the running job to the result
buffer only. Forwarding the escape codes rawly to terminal Com-
mander S is running on yields undesirable effects. If the running
job outputs the escape code to clear the screen, for example, this
escape code would be interpreted by the terminal emulator for the
terminal Commander S is running on, and clean the entire screen—
including the command buffer. Alas ncurses offers no solution to
this problem.

(define (spawn-console-loop
pause-channel resume-channel
window termbuf pty-channel)

(spawn (lambda ()
(let lp ((paint? #t))

(select
(wrap (receive-rv pause-channel)

(lambda (ignore)
(lp #f)))

(wrap (receive-rv resume-channel)
(lambda (ignore)

(lp #t)))
(wrap (receive-rv pty-channel)

(lambda (char)
(cond
((eof-object? char) (lp paint?))
(else
(terminal-buffer-add-char
termbuf char)

(if paint?
(begin

(curses-paint-terminal-buffer
termbuf window)

(wrefresh window)))
(lp paint?))))))))))

(define (pause-console-output console)
(send (console-pause-channel console) ’ignore))

(define (resume-console-output console)
(send (console-resume-channel console) ’ignore))

Figure 6. Updating aterminal-buffer and painting it.

6.4 Job status and job list

A job is in one of the following run states: running, finished,
stopped, waiting for input, or waiting with output (the latter applies
to background jobs without a console only). Traditional shells no-
tify the user either immediately or before drawing the next prompt
if the status of a job changes. Both methods have drawbacks: a
prompt notification means that the shell prints the notification di-
rectly to the terminal at point of time the status change occurs, thus
garbling the terminal output. Waiting for the next prompt avoids a
garbled screen, but the user has to issue (empty) commands from
time to time to see if a status change occurred. A graphical user
interface produces relief for this problem.

Commander S’s command buffer displays a small gauge, thejob
status indicator, in the lower right corner of the command window
(see figure 1). The job status indicator displays the current number
of processes in each of the possible state. Whenever the status of a
jobs changes, a thread updates the job counts immediately without
disrupting the user.

Commander S uses a centraljob list to maintain a list of all
jobs. The job list serves two purposes. First of all, it is needed
to implement thejobs command, which prints a list of all jobs
and their current state. As a second task, the job list registers all
status changes of a job and informs the job status indicator about
the change.

The implementation of the job list was tricky — there are
several sources of events that modify the state of the job list: A
user may submit a new job at the prompt, stop or continue a job,
or a background job may interrupt or finish its execution. Thus,
the job list needs to observe several diverse sources for events at
once. First of all, user commands such as submitting, continuing,
or stopping a job need to inform the job list about the job status
changes. The termination or suspension of a background jobs is
the second source for events that trigger changes in the state of



the job list. To notice these changes the job list needs to call
wait for each background job and update the job list. Using the
CML framework these diverse sources for events may easily be
represented uniformly as rendezvous. Thus, one centralselect
synchronously waits for the occurrence of any of the named events.

Figure 7 shows an excerpt from the implementation of the job
list. The functionspawn-joblist-surveillant starts the thread
that maintains the job list and returns thestatistics-channel.
This channel connects the job list with the job status indicator —
whenever the state of the job list changes in a relevant way, the job
list posts the updated job counts to this channel and the thread ac-
companying the job status indicator updates the gage. The thread
spawned byspawn-joblist-surveillant executes an infinite
loop that usesselect to choose a rendezvous from the possible
sources of events affecting the job list. The job list consists of lists
for each run state that are bound locally in the thread. The loop
variablenotify? indicates whether an update of the job status in-
dicator is due. If this is the case, the thread sends the current job
counts tostatistics-channel. The constructor for jobsmake-
job-sans-console and make-job-with-console submit the
jobs just created to job list using theadd-job-channel. If a ren-
dezvous on theadd-job-channel is enabled, the function associ-
ated to this event by thewrap combinator adds the new job to the
list of running jobs and continues the loop. In this case an update of
the job status indicator is due, thus the loop function is called with
#t as the value fornotify?. Receive rendezvous on thenotify-
continue/foreground-channel indicate that the user issued a
continue/fg or continue/bg command. Thus, a job that is ei-
ther stopped, waiting with output, or waiting for input changes to
the running state. The accordant action for this events deletes the
job from the lists for stopped jobs, adds it to the list of running job,
and setsnotify? to true. Theget-job-list-channel is used by
thejobs command to get the list of all jobs.

The job list also monitors the status changes of the processes
using wait. The constructor for jobs spawns a thread that calls
wait on a job’s process object, and fills a CML placeholder with
the status value returned bywait. The functionjob-status-rv
returns the corresponding rendezvous. This way, the status change
of a process translates to a CML rendezvous suitable for integration
with the job list’s select call. Thus, the job list surveillance
thread includes thejob-status-rv for all running jobs into the
selection of rendezvous by mappingjob-status-rv on the list
of all running jobs. The function associated with each rendezvous
adds and removes the affected job to the corresponding lists of
jobs in a specific state. The scsh functionsstatus:exit-val,
status:stop-sig, andstatus:term-sig decode thestatus
value returned byjob-status-rv. Depending on whether the
process exited, was suspended or terminated abnormally, these
functions return#f or an integer providing further information
on the reason of state change. If the operating system suspend
the process, for example,status:stop-sig returns the signal
number that yielded to suspension.

7. Related Work
There is multiplicity of file managers available that follow the tradi-
tion of the abandoned Norton Commander, such as the GNU Mid-
nightCommander [6] or LFM [8]. These applications use most of
the screen to display one or two file lists which the user may nav-
igate, use to select files, and perform operations on them. The last
line of the screen shows the shell prompt of a traditional shell. Thus,
these applications are clearly committed to work with files solely.
To Commander S, working with files is just one facet of a more
holistic approach for easing the work with a shell. The GNU Mid-
nightCommander comes with job control for background jobs but
these “jobs” are merely running copying and moving operations.

XEmacs and GNU Emacs ship withdired, a special mode for
editing directory trees [10]. The GNU screen [4] terminal manager
allows users to detach from a terminal and reattach to it later, and
offers some text based copy and paste mechanism. This provides a
functionality akin to Commander S’s console jobs.

8. Conclusion and Future Work
This paper presented Commander S as a browser for UNIX. With
the aid of command plug-ins, Commander S parses the output of
commands and acquires the contained information. Viewer plug-ins
use the ncurses library to present the output information as interac-
tive content. Commander S contains plug-ins for the most common
entities in shell interaction, processes, and filesystem contents. The
paper shows that it is possible with little effort to extend Comman-
der S to other domains. Through the use of the CML library, the
implementation of the job control is very short, even though it is
more powerful than in common UNIX shells and even contains a
small terminal emulator for running processes in the background
while saving their output.

The technique presented in this paper could be used to present
other information such as DNS result records, or the contents of
NIS or LDAP databases. As Commander S closely integrates an
evaluator for Scheme expressions, the user can always fall back to
writing small programs if the power of the command language or
the viewers does not suffice to accomplish a task.

One conceivable extension of Commander S is the integration
with the Orion window manager which is also based on Scsh.
In this combination, Orion would start several Commander S in-
stances concurrently, and assign every instance its own pseudo ter-
minal and Xterm window.

Acknowledgments Christoph de Mattia wrote thescsh-ncurses
bindings and an early prototype of Commander S calledscsh-
nuit.

References
[1] Sunterlib — the Scheme Untergrund library, 2005. Available at

http://www.scsh.net/resources/sunterlib.html.

[2] Norman Adams and Jonathan Rees. Object-oriented programming in
Scheme. InACM Conference on Lisp and Functional Programming,
pages 277–288, Snowbird, Utah, 1988. ACM Press.

[3] Eric Raymond, Zeyd Ben-Halim, and Thomas Dickey.Writing
programs with ncurses, 2004.

[4] Oliver Laumann et al. GNU Screen 4.0.2 user manual, 2005.
https://savannah.gnu.org/projects/screen/.

[5] Donald. A Lewine. POSIX Programmer’s Guide. O’Reilly &
Associates, Inc., 1994.

[6] Pavel Roskin and Miguel de Icaza. The GNU MidnightCommander,
2005.http://www.ibiblio.org/mc/.

[7] John H. Reppy. Concurrent Programming in ML. Cambridge
University Press, 1999.

[8] Iñigo Serna. lfm —last file manager, 2004.http://www.terra.
es/personal7/inigoserna/lfm/.

[9] Olin Shivers, Brian D. Carlstrom, Martin Gasbichler, and Mike
Sperber. Scsh Reference Manual, 2003. Available fromhttp:
//www.scsh.net/.

[10] Michael Sperber. Dired. http://www-pu.informatik.
uni-tuebingen.de/users/sperber/software/dired/%.



(define (spawn-joblist-surveillant)
(let ((statistics-channel (make-channel)))

(spawn (lambda ()
(let lp ((running ’()) (ready ’()) (stopped ’()) (new-output ’())

(waiting-for-input ’()) (notify? #f))
(cond
(notify?
(send statistics-channel ...)
(lp running ready stopped new-output waiting-for-input #f))

(else
(apply select
(append
(list
(wrap (receive-rv add-job-channel)

(lambda (new-job)
(lp (cons new-job running)

ready stopped new-output waiting-for-input #t)))
(wrap (receive-rv notify-continue/foreground-channel)

(lambda (job)
(lp (cons job running) ready

(delete job stopped) (delete job new-output)
(delete job waiting-for-input) #t)))

(wrap (receive-rv get-job-list-channel)
(lambda (answer-channel)

(send answer-channel ...)
(lp running ready stopped new-output waiting-for-input #f))))

(map
(lambda (job)

(wrap (job-status-rv job)
(lambda (status)

(cond
((status:exit-val status)
=> (lambda (ignore)

(lp (delete job running) (cons job ready) stopped
new-output waiting-for-input #t)))

((status:stop-sig status)
=> (lambda (signal)

(cond
((= signal signal/ttin)
(lp (delete job running) ready stopped new-output

(cons job waiting-for-input) #t))
((= signal signal/ttou)
(lp (delete job running) ready stopped

(cons job new-output) waiting-for-input #t))
((= signal signal/tstp)
(stop-job job)
(lp (delete job running) ready (cons job stopped)

new-output waiting-for-input #t))
(else (error "Unhandled signal" signal)))))

((status:term-sig status)
=> (lambda (signal)

(lp (delete job running) ready (cons job stopped)
new-output waiting-for-input #t)))))))

running))))))))
statistics-channel))

Figure 7. Excerpt from the implementation of a job list with asynchronous status indication.


