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Abstract

Functional dependencies help resolve many of the ambiguities that result from the
use of multi-parameter type classes. They effectively enable writing programs at the
type-level which significantly enhances the expressive power of Haskell’s type sys-
tem. Among the applications of this technique are the emulation of dependent types,
and precise typechecking for XML and HTML combinator libraries. Unfortunately,
the notation presently used for functional dependencies implies that the type-level
programs are logic programs, but many of its applications are conceptually func-
tional programs. We propose an alternative notation for functional dependencies
which adds a functional-programming notation to Haskell’s type classes and makes
applications of functional dependencies significantly more readable. We apply the
new notation to our examples and study the problems arising due to Haskell’s open
world assumption and overlapping instances.

Since the invention of type classes more than a decade ago [12], every new year
has seen astonishing new applications and interesting extensions of the original
idea. The most recent addition is Jones’s incorporation of functional depen-
dencies [8] which allow the formulation of tighter constraints on the instances
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of multi-parameter type classes. A functional dependency is a declaration
which specifies that a set of parameters of a type class uniquely determines
another parameter. Such a specification avoids many ambiguous typings.

Functional dependencies constrain the instance declarations so that they
specify a function at the type level. This functionality makes it feasible to
write regular programs entirely evaluated by the type checker, opening the
door for a wide range of potential applications [6,9].

Unfortunately, the use of functional dependencies is hampered by the tra-
ditional notation of type classes as relations and instances as logic programs
computing these relations: As the resulting programs are getting more com-
plex, they often become awkward and hard to read. This is not a fault of
the mechanism of functional dependencies per se, but of the syntax offered by
current implementations.

Thus, in this paper, we suggest a notational shift for type classes: View
a type class as a type-level function instead of a type-level relation. We offer
some realistic example applications of functional dependencies which would
benefit significantly from such a notation. Moreover, we give a brief formal
outline of how the new notation may be implemented by a translation to the
traditional syntax. We present the relevant part of a larger example—type-safe
combinator libraries for XML documents—and discuss some of the problems
remaining.

1 Simulating Dependent Types

We start our investigation with two simple examples drawn from the realm of
dependent types: formatted printing and specified list operations.

1.1 A type-safe sprintf

The sprintf function from the C-library is an example of an unsafe function
that can be made type-safe by using a dependent type [1]: The first parameter
of sprintf is a format specifier which determines the number and type of the
remaining parameters. The idea here is that a type-level function computes the
type of the remaining parameters from the format specifier. For this to work
in Haskell, format specifiers cannot simply be strings with control characters
but rather String constants or values from the following datatypes: 5

data I f = I f
data C f = C f
data S f = S String f

Using these datatypes, the format specifier

S "Int: " (I (S ", Char: " (C ".")))

5 Danvy [5] has shown that this particular example can be made to work relying only on
ML-style polymorphism.
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means “The literal string ‘Int: ’ followed by an integer followed by the
literal string ‘, Char: ’ followed by a character and terminated by a period.”
A somewhat more convenient notation for the format specifier is the following:

S "Int: " $ I $ S ", Char: " $ C $ "."

The type of the format specifier contains an almost complete encoding of
the format specifier itself, only omitting the string literals. In this case, the
type is:

S (I (S (C String)))

A type class SPRINTF specifies a member function sprintf1 which accepts
a prefix, that it prepends to the output, a format specifier, and matching
further arguments:

class SPRINTF m o | m -> o where
sprintf1 :: String -> m -> o

instance SPRINTF String String where
sprintf1 prefix str = prefix ++ str

instance SPRINTF a funa => SPRINTF (I a) (Int -> funa) where
sprintf1 prefix (I a) i = sprintf1 (prefix ++ show i) a

instance SPRINTF a funa => SPRINTF (C a) (Char -> funa) where
sprintf1 prefix (C a) c = sprintf1 (prefix ++ [c]) a

instance SPRINTF a funa => SPRINTF (S a) funa where
sprintf1 prefix (S str a) = sprintf1 (prefix ++ str) a

The instance declarations comprise a logic program for computing o from
m using the relation SPRINTF. In particular, the functional dependency m ->

o is a kind of mode declaration.
The main entry point, sprintf, supplies an empty prefix to sprintf1:

sprintf :: SPRINTF m o => m -> o
sprintf = sprintf1 ""

For example, the type of

sprintIntChar = sprintf (S "Int: " $ I $ S ", Char: " $ C $ ".")

is

sprintIntChar :: Int -> Char -> String

When applied to an integer and a character, sprintIntChar yields

> sprintIntChar 42 ’x’
"Int: 42, Char: x."
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1.2 Specified list operations

Another classic example for the use of dependent types is length-indexed
lists [13,9]. A translation of this example into Haskell first requires an en-
coding of natural numbers at the type level to encode list lengths:

data ZERO = ZERO
data SUCC n = SUCC n

ADD is a type class that encodes addition on these two datatypes at the
type level using a functional dependency:

class ADD a b c | a b -> c
instance ADD ZERO b b
instance ADD a b c => ADD (SUCC a) b (SUCC c)

Again, the instance declarations for ADD constitute a small logic program.
Two datatypes encode heterogeneous lists on the value-level and on the

type-level:

data NIL = NIL
data CONS x xs = CONS x xs

It is now possible to compute the length of a list statically via another
logic program at the type level:

class LISTLENGTH xs len | xs -> len where
listLength :: xs -> len

instance LISTLENGTH NIL ZERO where
listLength NIL = ZERO

instance LISTLENGTH xs len
=> LISTLENGTH (CONS x xs) (SUCC len) where

listLength (CONS x xs) = SUCC (listLength xs)

Here is a definition of an append operation on fixed-length lists:

class APPEND li1 li2 app | li1 li2 -> app where
append :: li1 -> li2 -> app

instance APPEND NIL y y where
append NIL y = y

instance APPEND xs ys app
=> APPEND (CONS x xs) ys (CONS x app) where

append (CONS x xs) ys = CONS x (append xs ys)

With these declarations in place, it is natural to relate the definitions of
LISTLENGTH and ADD to that of APPEND: Two concatenated lists must be as
long as the sum of their lengths. The condition can be seen as a partial
specification of append. Again, the constraint as a logic program is part of a
revised instance declaration for APPEND:

instance (APPEND xs ys app,
LISTLENGTH xs m,
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LISTLENGTH ys n,
ADD m n s,
LISTLENGTH app s)
=> APPEND (CONS x xs) ys (CONS x app) where

append (CONS x xs) ys = CONS x (append xs ys)

Now, changing LISTLENGTH to something incompatible with the constraint
results in a type error as soon as append occurs applied to a non-NIL list as
first argument anywhere in a program. Consider the following buggy definition
of LISTLENGTH:

instance LISTLENGTH NIL (SUCC ZERO) where
listLength NIL = SUCC ZERO

instance LISTLENGTH xs len
=> LISTLENGTH (CONS x xs) (SUCC ZERO) where

listLength (CONS x xs) = SUCC ZERO

As predicted, appending anything to (CONS 1 NIL) fails at compile time.
Here is the error reported by Hugs:

> append (CONS 1 NIL) NIL
ERROR: Constraints are not consistent with functional dependency
*** Constraint : ADD ZERO (SUCC ZERO) ZERO
*** And constraint : ADD ZERO (SUCC ZERO) (SUCC ZERO)
*** For class : ADD a b c
*** Break dependency : b a -> c

2 Functional is Better

The examples in the preceding section show that the logic-programming nota-
tion for type classes leads to poor readability in cases where the programmer
really wants to define functions rather than predicates. In particular, we iden-
tify the following shortcomings:

• A functional language should express functional dependencies directly as
functions. In the case of LISTLENGTH, where the listLength member mir-
rors the computation at the type level on the value level, the dichotomy is
especially painful.

• The notation is occasionally difficult to read. Consider the final instance
declaration of APPEND: The reader must discover that the type variable s is
shared between the last argument of ADD and that of LISTLENGTH. In the
sprintf example, nested applications are moved to the predicate set and
linked via result variables.

In the following subsections, we propose a functional syntax for type-level
functions and demonstrate their use with our examples.
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2.1 Functional sprintf

The modifications to the syntax are small and only affect the class and instance
declarations. The syntax of expressions does not change. The header of the
class declaration expresses the functional dependency directly. The first line
of an instance declaration becomes a defining equation for a type function,
the keyword where precedes the definition of the member function:

class SPRINTF :: m -> o where
sprintf1 :: String -> m -> o

instance SPRINTF String = String where
sprintf1 prefix str = prefix ++ str

instance SPRINTF (I a) = Int -> SPRINTF a where
sprintf1 prefix (I a) = \i -> sprintf1 (prefix ++ show i) a

instance SPRINTF (C a) = Char -> SPRINTF a where
sprintf1 prefix (C a) = \c -> sprintf1 (prefix ++ [c]) a

instance SPRINTF (S a) = SPRINTF a where
sprintf1 prefix (S str a) = sprintf1 (prefix ++ str) a

sprintf :: m -> SPRINTF m
sprintf = sprintf1 ""

The main conceptual change inherent in the notation is that type classes
no longer specify predicates on types but rather functions. A class declaration
by itself specifies the kind of the instance declarations; a new-style declaration

class SPRINTF :: m -> o

stands for the previous functional dependency

class SPRINTF m o | m -> o

The instance declarations define the corresponding function. This nota-
tion is arguably more natural than the logic-programming notation. This is
not merely the case for this specific notation, but for a number of typical
applications of functional dependencies.

With a functional notation on the type-level, qualified type schemes that
incorporate predicates with functional dependencies can also be expressed
more concisely: As the type annotation of sprintf shows, we can shift the
application of SPRINTF to the position where the resulting type occurs.

2.2 List operations

The list operations also benefit from the new notation. This example also
opens an additional issue, namely the question where to put the extra speci-
fication predicates that relate ADD, LISTLENGTH, and APPEND.
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t ::= a type variable

| C type constructor

| F type function

| t t type application

d ::= class F :: a1 . . . an → a class declaration

| instance (t1 == t′1; . . . ; tm == t′m) ⇒ F t1 . . . tn = t instance declaration

Fig. 1. Syntax for functional instances

class LISTLENGTH :: xs -> len where
listLength :: xs -> len

instance LISTLENGTH NIL = ZERO where
listLength NIL = ZERO

instance LISTLENGTH (CONS x xs) = SUCC (LISTLENGTH xs) where
listLength (CONS x xs) = SUCC (listLength xs)

class ADD :: a b -> c
instance ADD ZERO b = b
instance ADD (SUCC a) b = SUCC (Add a b)

class APPEND :: li1 li2 -> app where
append :: li1 -> li2 -> app

instance APPEND NIL y = y where
append NIL y = y

instance (LISTLENGTH (APPEND xs ys) ==
ADD (LISTLENGTH xs) (LISTLENGTH ys))

=> APPEND (CONS x xs) ys = CONS x (APPEND xs ys) where
append (CONS x xs) ys = CONS x (append xs ys)

This example shows that an instance declaration can carry an axiom
consisting of an equality constraint: LISTLENGTH (APPEND xs ys) == ADD

(LISTLENGTH xs) (LISTLENGTH ys). The intended semantics of this con-
straint is unification. The original logic program models this by sharing the
type variable s.

3 Functional Instances

We call the applicative notation for functional dependencies functional in-
stances. The implementation of functional instances does not require any
new machinery in the underlying Haskell system. The implementation is a
syntactic translation of functional instances into standard Haskell instance
declarations with functional dependencies. The translation resembles the flat-
tening translation for functional logic programming languages [2]. This section
gives an account of this translation. Figure 1 shows the syntax for functional

107



Gasbichler, Neubauer, Sperber, Thiemann

`δ class F :: a1 . . . an → a ; class F a1 . . . an a | a1 . . . an → a

`τ t ; P1 | t′ `σ {(l1, r1), . . . , (lm, rm)} ; P2

`δ instance (l1 == r1; . . . ; lm == rm) ⇒ F t1 . . . tn = t

; instance P1, P2 ⇒ F t1 . . . tn t′

`τ a ; ∅ | a
`τ C ; ∅ | C

`τ t1 ; P1 | t′1 `τ t2 ; P2 | t′2
`τ t1 t2 ; P1, P2 | t′1 t′2

`φ t ; P | t′

`τ t ; P, t′ a | a
a fresh

`φ t1 ; P1 | t′1 `τ t2 ; P2 | t′2
`φ t1 t2 ; P1, P2 | t′1 t′2

`φ F ; ∅ | F

Fig. 2. Translation to old-style class and instance definitions

instances. An instance declaration may specify a set of axioms that must be
fulfilled for the instance to apply. instance F t1 . . . tn = t is an abbreviation
for instance () ⇒ F t1 . . . tn = t.

In addition to the constraints imposed by the grammar, in every declara-
tion instance (. . .) ⇒ F t1 . . . tn = t, the terms t1, . . . , tn are constructor
terms, meaning that no type function symbols F occur in them. Also, each
type function of arity n must always be fully applied to n arguments.

The translation specified in Figures 2 and 3 is defined using five judgments:

(i) The judgment `δ d ; d′ maps a new-style definition, d, to an old-style
definition, d′. It is used for translating class and instance definitions.
The translation adds a result parameter to the class definition and states
the functional dependency. For an instance definition, it translates the
right-hand side of the definition into a predicate set and a type term.

(ii) The judgment, `τ t ; P | t′ translates a type term, t, into a predicate
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`σ ∅ ; ∅
`ω (l, r) ; P1 `σ {x2, . . . , xn} ; P2

`σ {(l, r), x2, . . . , xn} ; P1, P2

`τ t1 ; P1 | t′1 `τ t2 ; P2 | t′2
`ω (t1, t2) ; P1, P2, EQV t′1 t′2

Fig. 3. Translation of axioms

set, P , and a type, t′. Its main job is the translation of constructor terms,
which is straightforward.

(iii) The translation of applications of type functions is left to the judgment,
`φ t ; P | t′. It is only defined for terms t of the form F t1 . . . tn. All
arguments, ti, are translated using `τ; and the final rule that connects
`φ; to `τ; adds the result parameter, a, as a fresh variable and moves
the resulting predicate into the predicate set.

(iv) The judgment, `σ {(l1, r1), . . .} ; P , translates a set of equations,
li == ri, into a predicate, P . Its only function is to dispatch single equa-
tions to the next judgment.

(v) The judgment, `ω (t1, t2) ; P , translates a single equation into a pred-
icate set, P . It translates t1 and t2 into predicates and type expressions
without type functions. It enforces equality of t1 and t2 by making use of
an auxiliary type class EQV a b. This class specifies that a and b must
be equal:

class EQV a b | a -> b, b -> a
instance EQV a a

The functional dependencies in the class declaration specify that EQV is
an invertible function. The only instance defines that EQV is the identity
function.

It is a simple exercise to show that the judgment `δ; really defines a function.

Lemma 3.1 If `δ d ; d′ and `δ d ; d′′ then d′ is equal to d′′ up to renaming
of free variables.

4 A Larger Example: Regular Expressions

Besides giving a larger, real-life example, we also pinpoint new problems with
pattern matching on types in this section.

In our work on generating valid HTML and XML documents in Haskell
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[11], we model the restrictions that a DTD poses on the content of one par-
ticular XML element. The key ingredient in this model is a type class AddTo

elem subelem, which relates each element to its corresponding admissible
subelements. This approach requires that each element can be identified via
its type.

A DTD specifies, in principle, a regular language of subelements for the
contents of each element. It is straightforward to implement a simple recog-
nizer for each element specified in the DTD as a regular expression matcher.
Typechecking the uses of the element constructors then requires keeping track
of the states of this matching automaton at the type level. The transition func-
tion is a generalization of the AddTo class, namely a class NEXTSTATE subelem

elem elem’. In this approach, each element has an initial type (correspond-
ing to the initial state of its automaton) and adding subelements changes the
type of the element according to the transition function.

4.1 Data-Level Regular Expressions

Because of the laborious nature of standard type-level programs, we first
present the transition function in the more familiar value-level syntax; this
simplifies the presentation. First, here is a datatype for regular expressions:

type Symbol = String

data Regexp =
Empty | Epsilon | Atom Symbol |
Seq Regexp Regexp | Alt Regexp Regexp | Star Regexp

The transition function nextState maps an input symbol a and a regular
expression r to a regular expression r′ so that L(r′) = {w|aw ∈ L(r)}. This is a
well-known trick for matching a string to a regular expression. The same trick
can also be used to translate a regular expression directly into a deterministic
finite state automaton with regular expressions as its states [3]:

nextState :: Symbol -> Regexp -> Regexp
nextState a Empty = Empty
nextState a Epsilon = Empty
nextState a (Atom b) = if a == b then Epsilon else Empty
nextState a (Seq r1 r2) = if finalState r1

then alt ra rb
else ra
where ra = seq (nextState a r1) r2

rb = nextState a r2
nextState a (Alt r1 r2) = alt (nextState a r1) (nextState a r2)
nextState a (Star r) = seq (nextState a r) (Star r)

The alt and seq functions are “smart” versions of the corresponding Alt

and Seq data constructors which use standard algebraic identities to simplify
the resulting regular expressions on the fly; see Appendix A for their defini-
tions.
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The auxiliary finalState function (occasionally called nullable in the
parsing folklore), when applied to a regular expression r, yields True when
ε ∈ L(r), thus identifying final states in the automaton:

finalState :: Regexp -> Bool
finalState Empty = False
finalState Epsilon = True
finalState (Atom b) = False
finalState (Seq r1 r2) = finalState r1 && finalState r2
finalState (Alt r1 r2) = finalState r1 || finalState r2
finalState (Star r) = True

4.2 Type-Level Regular Expressions

One possible approach to lifting the regular expression matcher to the type
level is to explicitly compute the automaton first and translate it into a set
of instance declarations. This is somewhat more involved than merely imple-
menting the transition function. Consequently, it is more desirable to simply
lift the entire computation of the automaton to the type level, preserving as
much of the structure of the value-level program as possible.

The first step is to lift the declaration of regular expressions to the type
level. This works just like the natural-number and fixed-length list examples
above:

data EMPTY = EMPTY
data EPSILON = EPSILON
data ATOM t = ATOM t
data SEQ r s = SEQ r s
data ALT r s = ALT r s
data STAR r = STAR r

In the context of the HTML combinator library, the argument type of
ATOM is a tag such as DL, DD, or DT. Each of these tags is represented by a
corresponding (singleton) type, like EMPTY or EPSILON.

The transition function maps a state and a symbol to the next state.
Hence, it must be modeled using a type function NEXTSTATE: 6

class NEXTSTATE :: t s -> s’ where
nextState :: t -> s -> s’

For readability, we omit some definitions of the nextState member func-
tion in the running text (see Appendix B for the complete definitions). The
first two cases are simple:

instance NEXTSTATE t EMPTY = EMPTY where
nextState t EMPTY = EMPTY

instance NEXTSTATE t EPSILON = EMPTY where
nextState t EPSILON = EMPTY

6 A version of the code written in the traditional notation for functional dependencies is in
Appendix B.
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But the next case, dealing with ATOM, raises an interesting problem: The
conditional in the original program must distinguish between a matching and
a non-matching input symbol. Hence, it must be able to compare types and
“branch” on the results. The naive approach would be this one:

instance NEXTSTATE t (ATOM t) = EPSILON where ...
instance NEXTSTATE t (ATOM s) = EMPTY where ...

Unfortunately, the instances violate the functional dependency: all pa-
rameters are simultaneously unifiable by mapping s to t, but the results are
different.

In a more expressive language, it would be possible to state that t 6= s

in the second instance. Unfortunately, it is not obvious how such constraints
might be incorporated into the type language because inequations are not
admissible predicates in Jones’s framework of qualified types [7] (they are not
closed under substitution). In addition, it is not clear if term equality is really
the predicate that we want to test.

A working solution introduces an explicit equality test in the form of a
type class EQUAL:

class EQUAL :: s t -> b where
equal :: s -> t -> b

instance EQUAL DL DL = TRUE where equal DL DL = TRUE
instance EQUAL DL DT = FALSE where equal DL DT = FALSE
instance EQUAL DL DD = FALSE where equal DL DD = FALSE
...

where TRUE and FALSE are the obvious singleton types. To be useful, there
must be an instance definition for each pair of types, which are admissible
symbol types. Subsection 4.4 discusses the problem in more detail.

With this in place, the ATOM case turns into a single instance:

instance NEXTSTATE t (ATOM s) = IF (Equal s t) EPSILON EMPTY where
nextState t (ATOM s) = cond (equal s t) EPSILON EMPTY

where the IF type class implements a conditional on the level of types:

class IF :: b t1 t2 -> t where
cond :: b -> t1 -> t2 -> t

instance IF TRUE t1 t2 = t1 where cond TRUE t1 t2 = t1
instance IF FALSE t1 t2 = t2 where cond FALSE t1 t2 = t2

Interestingly, this conditional “evaluates” both branches, potentially even
before the condition itself is known.

Sequences are the most difficult case. Fortunately, the techniques devel-
oped so far apply in the same way:

instance NEXTSTATE t (SEQ r1 r2) =
IF (FINALSTATE r1)

(ALT (SEQ (NEXTSTATE t r1) r2) (NEXTSTATE t r2))
(SEQ (NEXTSTATE t r1) r2) where
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nextState t (SEQ r1 r2) =
let ra = seq’ (nextState t r1) r2

rb = nextState t r2
in cond (finalState r1) ra (alt’ ra rb)

The same holds for ALT and STAR:

instance NEXTSTATE t (ALT r1 r2) =
ALT (NEXTSTATE t r1) (NEXTSTATE t r2) where

nextState t (ALT r1 r2) =
alt’ (nextState t r1) (nextState t r2)

instance NEXTSTATE t (STAR r) =
SEQ (NEXTSTATE t r) (STAR r) where

nextState t (STAR r) =
seq’ (nextState r) (STAR r)

The definition of FINALSTATE is straightforward to derive from the value-
level function finalState. It is omitted because it poses no additional prob-
lems. It relies on type-level versions of and and or, AND and OR, which are
also straightforward.

4.3 Smart Constructors

In the data-level formulation, smart versions of Alt and Seq called alt and
seq simplify the resulting regular expressions on-the-fly. When computing a
matching automaton at the data level, this is strictly necessary to obtain a
finite set of states. The type-level does not need to enumerate all the states, so
it is possible to do without simplification. However, after several transitions,
the type terms and their evidence-data terms grow enormously and slow down
the type checker considerably.

Implementing smart constructors at the type level poses some interesting
additional problems. The smart versions of ALT and SEQ are type classes called
ALT’ and SEQ’. Their class declarations are as follows:

class SEQ’ :: r1 r2 -> r
class ALT’ :: r1 r2 -> r

Their instance declarations can be easily derived from their data-level
counterparts. However, they must be spelled out in considerably more de-
tail. In particular, most variables must be eliminated from the patterns. For
example:

instance ALT’ EMPTY r = r
instance ALT’ r EMPTY = r

These two instances overlap and hence the type checker rejects them. Even
the implemented extensions for overlapping instances [10] do not help in this
case because each instance matches the other.

One approach to make the instances non-overlapping is to define instances
for all combinations of parameters r1 and r2 to ALT’. However, this results
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in a quadratic number of instances.
A better approach is to sequentialize the class ALT’. In this approach,

ALT’ is only responsible for dispatching on the first parameter. Dispatching
on the second parameter is left to yet another type class ALT’’. Sequentializing
“only” doubles the number of instances. Here is the beginning of that effort:

instance ALT’ EMPTY r2 = r2
instance ALT’ r1 r2 = ALT’’ r1 r2

The last line gives rise to an overlapping instance, but it can be resolved
using the extension for overlapping instances. 7

Ideally, an implementation of ALT’’ would look as follows:

class ALT’’ :: r1 r2 -> r
instance ALT’’ r1 EMPTY = r1
instance ALT’’ r1 r2 = ALT r1 r2

Unfortunately, the last line breaks the functional dependency: in the case
where r2 = EMPTY, the last line says that ALT’’ r1 EMPTY = ALT r1 EMPTY
which seems to contradict the functional dependency of ALT’’ (at least, this
is what the implementations tell us). Consequently, all the alternatives need
to be listed:

instance ALT’’ r1 EPSILON = ALT r1 EPSILON
instance ALT’’ r1 (ATOM t) = ALT r1 (ATOM t)
instance ALT’’ r1 (SEQ s1 s2) = ALT r1 (SEQ s1 s2)
instance ALT’’ r1 (ALT s1 s2) = ALT r1 (ALT s1 s2)
instance ALT’’ r1 (STAR s) = ALT r1 (STAR s)

4.4 The Problem with Equality

The astute reader will have asked why the type class EQUAL is defined as a
function that explicitly maps a pair of types to TRUE or FALSE. It would be
much more in line with typical type class programming to define a type class
EQUAL2 along the following lines (in the traditional syntax):

class EQUAL2 a b
instance EQUAL2 DL DL

7 Unfortunately, the February 2001 release of Hugs 98 is not able to correctly process the
instances of ALT’. To obtain runnable code, it is necessary to expand the second line by
giving the following set of instance definitions:

instance ALT’ EMPTY r2 r2
instance (ALT’’ EPSILON r2 r) => ALT’ EPSILON r2 r
instance (ALT’’ (ATOM t) r2 r) => ALT’ (ATOM t) r2 r
instance (ALT’’ (SEQ s1 s2) r2 r) => ALT’ (SEQ s1 s2) r2 r
instance (ALT’’ (ALT s1 s2) r2 r) => ALT’ (ALT s1 s2) r2 r
instance (ALT’’ (STAR r1) r2 r) => ALT’ (STAR r1) r2 r

These instance definitions require a facility to turn off the termination guarantee of predicate
rewriting (thus making type checking undecidable) because there are non-variable types in
the predicates.
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instance EQUAL2 DT DT
instance EQUAL2 DD DD
...

This type class could even be specified with a linear number of instance dec-
larations.

Unfortunately, EQUAL2 is not up to the job. Since the Haskell class system
is designed with an open-world assumption in mind, it is impossible to extract
negative information from the definition of EQUAL2. A predicate like EQUAL2

DL DT simply remains unreduced in the context. Hence, it cannot be used to
select a particular instance.

Neither does the class EQV from Section 3 perform the desired task. Using
the predicate EQV t1 t2 immediately unifies t1 and t2, thereby making it
impossible to reach the EMPTY case for NEXTSTATE t (ATOM s).

5 Towards better Type-Level Pattern Matching

While the syntax proposed in the previous sections is appealing and makes
type-level programming much easier, it still leaves much to be desired. Most
prominently, function definitions on the data level are still more readable than
the ones on the type level, largely because data-level functions can utilize wild-
card patterns and type-level functions cannot. Unfortunately, a naive trans-
lation of wild-card patterns to instances gives rise to overlapping instances.
These overlapping instances are not easily resolved (witness Section 4.3), and
give rise to subtle type checking problems.

Part of the problem lies in the as yet unexplored interaction of functional
dependencies and overlapping instances. Since there is no underlying theory
that encompasses both, there is still work to be done here.

Another part of the problem stems from the fact that type classes are the
only structuring tool available for types. Data values can be classified by types
in a much more rigorous fashion than types can be classified by type classes.
This weak classification of types is due to the open nature of type classes:
The typing of a program must not depend on the instances known at compile
time. Instead, the program is guaranteed to work regardless of the instances
that are added later on. Hence, it is impossible to automatically expand a
wild-card pattern into the potential parameter types because this set might
be different depending on the context of use of a particular module.

Moreover, the simplification example (Sec. 4.3), requires sequentializing
the pattern matching. This “pattern matching by hand” seems wasteful, but
is impossible to automate, as pattern-match compilation heavily relies on wild-
card patterns.

A potential way out of the problem with wild-card patterns (and hence
with pattern matching, too) lies in enriching the kind structure. Currently,
the only kinds available are types, ∗, and arrow kinds, κ → κ′. An enumerated
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kind defines a set of types, but in contrast to a type class, its set of types cannot
be changed once it is defined.

The proposed notation for the simplification example (Sec. 4.3) is the fol-
lowing:

class ALT’ r1 r2 -> r with
r1, r2 <- { EMPTY, EPSILON, ATOM t, SEQ r1 r2, ALT r1 r2, STAR r1 }

Using this information, the compiler can compile pattern matching by
expanding wild cards. 8

6 Getting It Back

All examples presented in this paper exclusively rely on type classes defined
using functional instances. The notation does not subsume the old notation
for type classes. On the other hand, it is easy to embed old-style type classes
into functional instances by always returning a dummy Success type from
the type-level functions.

Moreover, the notation for functional instances also does not subsume
functional dependencies. Specifically, functional instances do not not cover
the following cases:

(i) functional dependencies which do not cover all of the variables of the type
class

(ii) multiple functional dependencies in a single type class

In the first case, a class written using functional instances introduces type
variables on the left-hand side which do not occur on the right-hand side of
its instances. Naive implementations of type inference for functional depen-
dencies might miss opportunities for improvement in this case. However, it is
straightforward to detect unused left-hand-side type variables and omit them
from the generated functional dependencies.

The second case is more involved, and it is hard to assess the value of multi-
ple functional dependencies, as there are few published examples which make
fundamental use of them. (Jones’s original paper on functional dependen-
cies [8] contains not a single concrete example for multiple dependencies, and
the examples in McBride’s collection [9] also work without them in concrete

8 Curiously, it is already possible to define type classes that correspond to singleton kinds.
For example, the class

class STrue true | -> true

has a functional dependency, which states that its parameter true depends on nothing.
Hence, it must be a constant function (or undefined). Only a single instance declaration is
possible:

instance STrue TRUE

Any use of STrue a in a context immediately simplifies to a = TRUE.
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applications.) In any case, it seems it is usually possible to rewrite multiple
functional dependencies into multiple type classes implementing the different
modes specified by them.

7 Conclusions

We have shown examples for performing non-trivial computations on types
using extensions of the Haskell class mechanism. We propose an alternative,
applicative syntax for specifying type functions and we provide a translation
from new-style classes and instances to the original formulation.

While we have shown how to translate the new functional instances into
the old functional dependencies, we have not addressed the issue of how to
do the reverse. Moreover, there is the question of how to define and handle
ordinary type classes without functional dependencies in the new framework.
One simple option is to keep the old notation entirely. Another option would
be to reinterpret all type classes as functions rather than predicates. This
means that inheritance constraints could also be formulated using equations
over the values of type-class applications. The right mix is the subject of
ongoing work.

Given the fragile nature of the available implementations of functional
dependencies and the drawbacks listed in Section 5, we feel that the support
for type-level programming is still in its infancy. To get the best of both
worlds, there must be a better way of classifying types than type classes.
The natural proposition here is to look to dependently typed systems and to
allow lifting data-level computation to the type level [4]. This would solve
the classification problem (since every lifted data value belongs to a lifted
type, which is a kind), and address the problems about pattern matching and
properties, too.

Also, since pattern matching has a well-defined semantics, such a step
would alleviate the problems with overlapping instances. It remains, of course,
to integrate this kind of computations into a type checker. This is also part
of our ongoing work.
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A Smart Constructors

These are the value-level definitions of the seq and alt smart constructors:

seq Empty r = Empty
seq r Empty = Empty
seq Epsilon r = r
seq r Epsilon = r
seq (Seq r1 r2) r3 = Seq r1 (seq r2 r3)
seq r1 r2 = Seq r1 r2
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alt Empty r = r
alt r Empty = r
alt Epsilon Epsilon = Epsilon
alt Epsilon (Star r) = Star r
alt (Star r) Epsilon = Star r
alt (Alt r1 r2) r3 = Alt r1 (alt r2 r3)
alt r1 r2 = Alt r1 r2

B Instance Declarations for NEXTSTATE and FINALSTATE

Here is the code for the NEXTSTATE class in the traditional syntax for functional
dependencies:

class NEXTSTATE t s s’ | t s -> s’ where
nextState :: t -> s -> s’

instance NEXTSTATE t EMPTY EMPTY where
nextState t EMPTY = EMPTY

instance NEXTSTATE t EPSILON EMPTY where
nextState t EPSILON = EMPTY

instance (EQUAL s t b, IF b EPSILON EMPTY r)
=> NEXTSTATE t (ATOM s) r where

nextState t (ATOM s) = cond (equal s t) EPSILON EMPTY

instance (FINALSTATE r1 b,
NEXTSTATE t r2 rb,
NEXTSTATE t r1 ra’,
SEQ’ ra’ r2 ra,
ALT’ ra rb rb’
IF b ra rb’ r)
=> NEXTSTATE t (SEQ r1 r2) r where

nextState t (SEQ r1 r2) =
let ra = seq’ (nextState t r1) r2

rb = nextState t r2
in cond (finalState r1) ra (alt’ ra rb)

instance (NEXTSTATE t r1 r1’,
NEXTSTATE t r2 r2’,
ALT’ r1’ r2’ r’)
=> NEXTSTATE t (ALT r1 r2) r’ where

nextState t (ALT r1 r2) =
alt’ (nextState t r1) (nextState t r2)

instance (NEXTSTATE t r r’,
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SEQ’ r’ (STAR r) r’’)
=> NEXTSTATE t (STAR r) r’’ where

nextState t (STAR r) =
seq’ (nextState r) (STAR r)

Here is the definition of FINALSTATE in the traditional syntax:

class FINALSTATE s t | s -> t where
finalState :: s -> t

instance FINALSTATE EMPTY FALSE
instance FINALSTATE EPSILON TRUE
instance FINALSTATE (ATOM t) FALSE
instance (FINALSTATE r r’, FINALSTATE s s’, AND r’ s’ u’)

=> FINALSTATE (SEQUENCE r s) u’
instance (FINALSTATE r r’, FINALSTATE s s’, OR r’ s’ u’)

=> FINALSTATE (UNION r s) u’
instance FINALSTATE r r’ => FINALSTATE (PLUS r) r’
instance FINALSTATE (STAR r) TRUE
instance FINALSTATE (OPTION r) TRUE

The definition of the IF class in the traditional syntax:

class IF b t1 t2 r | b t1 t2 -> r where
cond :: b -> t1 -> t2 -> r

instance IF TRUE t1 t2 t1 where
cond TRUE t1 t2 = t1

instance IF FALSE t1 t2 t1 where
cond FALSE t1 t2 = t2

The definition of FINALSTATE requires type-level versions of the logical
operations && and ||. These are two type classes AND and OR. Their definition
in the traditional syntax:

class OR s t u | s t -> u
instance OR FALSE FALSE FALSE
instance OR FALSE TRUE TRUE
instance OR TRUE FALSE TRUE
instance OR TRUE TRUE TRUE

class AND s t u | s t -> u
instance AND FALSE FALSE FALSE
instance AND FALSE TRUE FALSE
instance AND TRUE FALSE FALSE
instance AND TRUE TRUE TRUE
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